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Examples for differential equations

Newton’s second law for a point mass

Consider a particle of mass m subject to net forcea F . Newton’s second
law states that the vector acceleration a of the particle is caused by the
net force F and is proportional to that force:

F = ma, or a =
1

m
F ,

where the coefficient of proportionality m is referred to as the (inertial)
mass.

aBy net force, also called the resultant force, one means the vector sum of all forces
acting on the particle.
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Examples for differential equations

Equation of free fall: Let’s denote by x(t) the position of the
point mass at time instant t. Then the velocity of the particle is ẋ(t) and
its acceleration is ẍ(t). Since the acceleration of a freely falling mass is
constant (because F is also constant in this case) we have

ẍ(t) = −g ,

where g ≈ 9.81m
s2 is the acceleration due to gravity of Earth.
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Examples for differential equations

Integration twice the previous equation we get

x(t) = −gt2

2
+ c1t + c2,

where c1, c2 are arbitrary constants.
Assuming zero velocity at the time instant t = 0 and starting the free fall
from height s̄ one can derive the following initial conditions:

x(0) = s̄, x ′(0) = 0.

One can determine now the values of c1 and c2 and the solution which
fulfils the initial conditions is

x(t) = −gt2

2
+ s̄,

which gives the position of a point mass depending on time t falling
freely from hight s̄.
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Examples for differential equations

Equation of harmonic oscillation: The next simple example is,
when F = −kx , (k > 0). The minus sign indicates that the force is
restoring. One can think of F as the tension of a linear zero length
spring, i.e., of a spring whose relaxed length is zero. Then Newton’s
equation becomes

x ′′(t) = −ω2x(t),

where ω2 = k
m . The solution will be

x(t) = a cos(ωt + ϕ),

where a is the amplitude and ϕ is the phase are arbitrary constants which
can be determined from the initial data.

A geometric example: Assume that the slope of a function at a
point (t, x(t)) equals to the sum of the coordinates of the point. Then
we have the differential equation

x ′(t) = t + x(t)

whose general solution is:
cet − t − 1.
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Examples for differential equations

Equation of radioactive decay: Denote by x(t), t ≥ 0 the
amount of the material which is not decayed at the time instant t.
According to experience the amount of the decayed material (during one
unit of time) is proportional to the amount of the remaining material:

x(t)− x(t + 1) = αx(t),

where α is a parameter which depends on only the material. Take h as a
time unit, then our equation can be written as

x(t)− x(t + h) = α(h)x(t).

It can be derived that α is monotone decreasing and there is a β such

that limh→0
α(h)
h = β > 0. Taking the limit h→∞ we have the following

ODE
x ′(t) = −βx(t).

Its general solution is
x(t) = ce−βt .
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Examples for differential equations

Population growth model: Let x(t) be the size of a population at
time t. If the relative growth rate of the population per unit time is
denoted by c(t, x(t)), then

x ′(t) = c(t, x(t))x(t).

In practice the population cannot be arbitrary large. The number N
denotes the size of the largest population that can be supported by the
system. We assume that the relative population growth rate depends
only on x , and it tends to zero as the size of the population approaches
N. In particular, we assume that c is given by one of the followings:

c(x(t)) = α(N − x(t))k , k ∈ {0, 1, 2}.

The case k = 1 results the logistic equation.
At t = 0 we have the value α = c0(N − x0)−k . Substituting this into the
equation using the initial conditions x0 = 1 and N = βx0 we get

x ′ = c0

(
β − x

β − 1

)k

, k ∈ {0, 1, 2}.

If k = 0 or k = 1 the solution is not difficult.
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Examples for differential equations, Exercises

Galileo Galilei drop down two balls of the same size from the 56
meters hight Leaning Tower of Pisa. The first one is made of metal
(100 kilograms), the second one is made of wood (10 kilograms).
What happens? Which ball falls down faster? Calculate the time is
needed!

The initial mass of an Iodine isotope was 200g. Determine the
Iodine mass after 30 days if the half life of the isotope is 8 days.

The cooling velocity of a body is proportional the difference between
temperature of the environment and the temperature of the body.
Let’s denote by T the former and by Tk the latter. A body with
temperature 100 Celsius in an environment with 0 Celsius cools
down 50 Celsius in 20 minutes. What is the temperature of the body
after 10 minutes cooling? Use the Heat Equation

∂T

∂t
= −k(T − Tk),

where k depends on the material.
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Classification of differential equations

A differential equation is an equation containing independent variables,
functions, and derivatives of functions. An equation involving derivatives
of one variable functions is said to be an ordinary differential equation
ODE for short.

Examples for ODE

x ′(t) = t3x(t),

x ′(t) = 4t
√
x(t), x(1) = 1,

x ′(t) = log(x(t)),

x ′(t) = (1 + x2) log t.

An equation involving partial derivatives of multivariable functions is
called partial differential equation for short PDE.

Examples for PDE
∂u
∂t (t, x) = 0,

∂2u
∂t2 (t, x) + ∂2u

∂x2 (t, x) = 0,

∂u
∂t (t, x1, . . . , xn)− ∂2u

∂x2
1

(t, x1, . . . , xn)− · · · − ∂2u
∂x2

n
(t, x1, . . . , xn) = et .

Pál Burai Mathematics for Engineers II. lectures



Classification of differential equations

A system of equations involving derivatives or partial derivatives of
functions is called a system of ordinary differential equations or a system
of partial differential equations respectively.
An ODE can be linear or nonlinear. For example the general form of the
first order, linear equation is

x′(t) + g(t)x(t) = f(t).

Examples for linear ODE

x ′(t)− tx(t) = t3,

x ′(t) + x(t) = e−t ,

x ′(t) + x(t) tan t = sin 2t t ∈]0, π2 [,

tx ′(t) + 2x(t) = 3t, x(1) = 0,

x ′(t) = x(t) + t,

x ′′(t) = −tx(t) + t.
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Classification of differential equations

Examples for nonlinear ODE

x ′(t)x3(t) = t3,

x ′2(t) + x(t) = 0,

x ′(t) + tan(x(t))t = sin 2t t ∈]0, π2 [,

x ′(t) + x(t) = − 1
x(t) .

If the highest order derivative is n in the equation, then it is said to be an
nth order equation.

Examples for higher order ODE

x ′′ − x ′ − x = 0,

an(t)x (n)(t) + · · ·+ a1(t)x ′(t) + a0(t)x(t) = f (t, x(t), . . . , x (n)(t)),

y ′′′(x)− y ′(x) = 0, y(0) = 3, y ′(0) = −1, y ′′(0) = 1,

z(s)− z ′′′(s)z ′(s) = z ′′(s).

An nth order ODE can be written as a system of first order ODEs
containing n equations.
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The concept of ODE

Let I ⊂ R be an open, nonempty interval and F : I × Rn+1 → R be a
given function. The equation

(IKDE) F (t, x , x ′, . . . , x (n)) = 0

is called an nth order, implicit, ordinary differential equation. If there
exists f : I × Rn → R, with the property F = x (n) − f , then (??) can be
written in the form

(EKDE) x (n) = f (t, x , x ′, . . . , x (n−1))

which is called an nth order, explicit, ordinary differential equation.
If there are functions ai : I → R, i = 0, . . . , n − 1 such that
f =

∑n−1
i=0 aix

(i), in detail

(LKDE) x (n) = a0(t)x + a1(t)x ′ + · · ·+ an−1(t)x (n−1) + h(t),

then the equation (??) is said to be an nth order, linear ODE.
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Explicit first order ODE

Let D ⊂ R2, f : D → R, then the equation

(EE-KDE) x ′ = f (t, x)

is called an explicit, firs order ODE.

Solution of (??)

Let I be an interval. The function x : I → R is a solution of (??), if

the graph of x is in D, that is to say

(t, x(t)) ∈ D, t ∈ I ,

x is differentiable,

x fulfils the equation, that is

x ′(t) = f (t, x(t)), t ∈ I .
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Direction field

Using the previous notations if t ∈ I , then (t, x(t), f (t, x(t)) the triple is
called a line element. The collection of all line elements

IM := { (t, x(t), f (t, x(t)) | t ∈ I }

is called a direction field (more precisely it is the direction field
belonging to(??)).

The connection between direction fields and the differential equation can
be expressed in geometric terms as follows: A solution x of a differential
equation ”fits” its direction field, i.e., the slope at each point on the
solution curve agrees with the slope of the line element at that point. For
example the direction field of equation x ′ = ex sin(t) is:
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The previous geometric interpretation suggests that there is a unique
solution of the equation at every point. This is not true in general. Lets
consider the equation below together with the parametric solution family
(a < 0):

x ′ =
√

2|x |, xa(t) =


t2

2 if t > 0

0 if a < t ≤ 0
−(t−a)2

2 if t ≤ a.

Then this equation has infinitely many solution with the initial condition
x(0) = 0.
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Initial value problem

Using the previous notations the following pair

x ′(t) = f (t, x(t)), x ∈ I ,(1)

x(ξ) = η(2)

is said to be an initial value problem. The second equation is the initial
condition.

The example on the previous slide shows that the initial value problem is
not uniquely solvable in general.

We will prove later, that it is uniquely solvable if we add a simple
assumption to the initial value problem. Existence and uniqueness are
very important questions considering applications in particular numerical
solution of ODE.
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Example

Let’s consider the following initial value problem:

x ′ = x

x(0) = 1

In the direction field of the equation (in blue) it is drawn (in red) the
unique solution of the above mentioned initial value problem.
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Elementary solution methods

x ′ = f (t)

If the right hand side does not depend on the unknown function, then we
get the solution after a simple integration of the equation.

x(t) =

t∫
ξ

f (t)dt

This solution fulfils the initial condition x(ξ) = 0.

Example

The solutions of the equation

x ′ = t3 + cos t

has the form

x(t) =
1

4
t4 + sin t + C .

Determine the solution which fulfils the initial condition x(1) = 1.
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Elementary solution methods

x ′ = g(x)

Assuming heuristically t can be written as a function of x , rearranging
the equation we have ∫

dx

g(x)
=

∫
1 dt = t + C ,

where C is an arbitrary constant.

Example

x ′ = x ,

the nowhere zero solutions are∫
dx

x
=

∫
1 dt = t + C ⇒ log(|x |) = t + C ⇒ x(t) = Ket ,

where K is an arbitrary constant.
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Elementary solution methods

Separable differential equations

(3) x ′ = f (t)g(x)

Heuristic: let’s write the equation into the following form

dx

dt
= f (t)g(x).

Rearranging the equation (”separating” the variables), after integration
we have ∫

dx

g(x)
=

∫
f (t)dt .
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Elementary solution methods

If we apply the previous heuristic for the following initial value problem

(4) x ′ = f (t)g(x), x(ξ) = η

we get the equation below:

(5)

x∫
η

da

g(a)
=

t∫
ξ

f (b)db

Theorem
Assume that

f is continuous on the interval It ,

g is continuous on the interval Ix ,

η is an interior point of Ix and g(η) 6= 0.

Then there exists a neighbourhood of ξ (it can be a one-sided
neighbourhood if ξ is a boundary point) in which the initial value
problem (??) has a unique solution x(t). It can be obtained from
equation (??) by solving for x.
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Elementary solution methods

Exercises

x ′ = 1
t+a , a ∈ R,

z ′ = 1
2+3t2 ,

u′ = cos(t),

y ′ = x , y(0) = 1,

x ′ = −x , x(1) = −1,

y ′ = xex ,

x ′ = tex ,

(t2 − 1)x ′ + 2tx2 = 0.

Pál Burai Mathematics for Engineers II. lectures



Linear differential equations

Let g , h : I → R be continuous functions, then the equation

(6) x ′ + g(t)x = h(t), t ∈ I

is called a linear differential equation. If h ≡ 0 then the equation is
homogeneous, otherwise it is inhomogeneous.

Solution of the homogeneous equation

This is a special separable equation, its solution is

x(t;C ) = Ce−G(t), where G (t) =

t∫
ξ

g(a)da,

where ξ ∈ I is fixed. The solution which fulfil the initial condition
x(ξ) = η can be written as

x(t) = ηe−G(t).
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Linear differential equations

Solution of the inhomogeneous equation

We are looking for the solution in a similar form, x(t;C ) = Ce−G(t), as in
the homogeneous case. However, C is not constant here, but a function
of t.

Example

Lets consider the inhomogeneous equation x ′ − x = t.
Homogeneous part: x ′ = x ⇒ x = cet . Method of variation of
constants: c  c(t), substitution, x(t) = c(t)et and
x ′(t) = c ′(t)et + c(t)et . Substituting back into the original equation:

c ′(t)et + c(t)et︸ ︷︷ ︸
x′

− c(t)et︸ ︷︷ ︸
x

= t ⇒ c ′ = te−t ⇒ c(t) = e−t(1− t) + K ,

where K is an arbitrary constant.
Using this, the solution of the original equation is:

x = 1− t + Ket , where K is an arbitrary constant.
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Linear differential equations

Exercises

x ′ + 2tx = 0,

tx ′ − x = 0,

x ′ − x
t = t2 + 3t − 2,

(t − 2)x ′ − x = 2(t − 2)3.
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Nonlinear equations

Bernoulli equation

Jacob Bernoulli (1654-1705) Swiss mathematician discovered the
following nonlinear differential equation, which is a special case of the
logistic equation.

x ′ + g(t)x + h(t)xα = 0, α 6= 1.

Multiply the equation by (1− α)x−α then the function y = x1−α is a
solution of the linear equation

y ′ + (1− α)g(t)y + (1− α)h(t) = 0.
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Nonlinear equations

Example

x ′ − x − tx5 = 0 multiply by − 4x−5 we have − 4x−5x ′ + x−4 + 4t = 0.

After the substitutions y = x−4, y ′ = −4x−5x ′ we have to solve the
linear ODE

y ′ + 4y + 4t = 0,

its solution is

x−4 = y = ce−4t − t +
1

4
.

Exercises

3x ′ + x = (1− 2t)x4,

x ′ + x = x2(cos t − sin t).
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Nonlinear equations

Riccati equation

The nonlinear equation below was discovered by Jacopo Riccati
(1676-1754) from Venice.

x ′ = q0(t) + q1(t)x + q2(t)x2

Except in special instances, the solutions cannot be given in closed form.
However, if one solution is known, then the remaining solutions can be
explicitly calculated.

Let ϕ be a given solution, then u := x − ϕ is a solution of the equation

(x − ϕ)′︸ ︷︷ ︸
u′

= q1(t) (x − ϕ)︸ ︷︷ ︸
u

+q2(t)(y2−ϕ2) = q1(t)u+q2(t) (x − ϕ)︸ ︷︷ ︸
=u

(x + ϕ)︸ ︷︷ ︸
=u+2ϕ

,

where x is an arbitrary unknown solution of the original equation. From
this we have the Bernoulli equation for u

x ′ =
(
q1(t) + 2q2(t)ϕ

)
u + q2(t)u2.
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Nonlinear equations

Exercises
Solve the Riccati equations using the given particular solutions:

y ′(x) + 1
x y(x) + y2(x) = 4

x2 , yp(x) = 2
x ,

y ′(x) + 1
3y

2(x) + 2
3

1
x2 = 0, yp(x) = 1

x ,

y ′(x) + 2y(x)ex − y2(x) = e2x + ex , yp(x) = ex ,

y ′(x)− y(x)
x = y2(x) + 1

x2 , y(x)p = c
x .
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System of equations and higher order equations

Definition
The system of equations

x ′1 = f1(t, x1, . . . , xn)

...

x ′n = fn(t, x1, . . . , xn)

is called a first order, explicit, differential equation, where
fi : D ⊂ Rn+1 → R, i = 1, . . . , n are given functions.
The vector function xT = (x1, . . . , xn) is a solution of the system if
(t, x) ∈ D and the components of x fulfils the system.

Using the previously introduced vector notation, the system can be
written in the following closed form

x ′ = f (t, x),

where f T = (f1, . . . , fn).
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System of equations and higher order equations

Differentiation and integration of vector functions is understood
coordinate-wise. Using the vector notation the problem

x ′ = f (t, x), x(ξ) = η, ξ ∈ R, η ∈ Rn

is called an initial value problem with respect to the first order,
explicit, differential equation x ′ = f (x , t). One can pose an analogous
existence and uniqueness theorem for this problem as in the one-variable
case.

Definition
The equation

x (n) = f (t, x , x ′, . . . , x (n−1))

is called an nth order, explicit, ordinary differential equation.
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System of equations and higher order equations

The nth order equation can be transformed into a first order, explicit
system of ODE in the following way:

x ′1 = x2, x
′
2 = x3, . . . , x

′
n−1 = xn, x

′
n = f (t, x1, . . . , xn−1).

The nth order equation and the system of equations are equivalent in the
following sense: If x is a solution of the nth order equation, then the
vector function x = (x1, . . . , xn) is a solution of the system. Conversely, if
x is a differentiable solution of the system, and one sets x =: x1, then x
is n-times differentiable, x = (x1, . . . , xn) = (x , x ′, . . . , x (n−1)) is a
solution of the system.

This relation will be important later in the numerical solution of higher
order equations!
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Second order, linear ODE

Linear equation of order 2 with constant coefficients

ax ′′ + bx ′ + cx = 0,

where a, b, c ∈ R are given constants. The quadratic equation

aλ2 + bλ+ c = 0

is said to be the characteristic equation of the linear equation of
second order with constant coefficients.

Definition

Two functions are called linearly independent (on the intersection of
their domains) if the zero function can be combined linearly from them
only in a trivial way, that is to say, ϕ,ψ linearly independent if
λϕ+ µψ = 0 if and only if λ = µ = 0.
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Second order, linear ODE

Example

Functions ϕ(t) = eαt and ψ(t) = eβt α 6= β are linearly independent.

Solution of linear equation of second order with constant
coefficients
If the the linearly independent functions ϕ1 and ϕ2 are the solutions of
the homogeneous equation, then all the solutions can be written as their
linear combination:

c1ϕ1 + c2ϕ2,

where c1, c2 are arbitrary constants.
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Second order, linear ODE

Let λ1, λ2 be the roots of the characteristic equation. Then the following
cases are possible:

We have two different real roots, then ϕ1(t) = eλ1t and
ϕ2(t) = eλ2t are linearly independent solutions.

We have one real double root λ1 = λ2 = λ. Then ϕ1(t) = eλt and
ϕ2(t) = teλt are linearly independent solutions.

We have two complex roots λ1 = α + iβ and λ2 = α− iβ. Then
ϕ1(t) = eαt cos(βt) and ϕ2(t) = eαt sin(βt) are linearly
independent solutions.

Example

Let’s consider the equation x ′′ − x ′ − 6x = 0. The roots of the
characteristic equation are λ1 = 3 and λ2 = −2, so the general solution
of the differential eqaution is:

x(t) = c1e
3t + c2e

−2t
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Second order, linear ODE

Exercises
Solve the following differential equations!

x ′′ − 8x ′ + 16 = 0,

4x ′′ + 4x ′ + 37x = 0,

In case of undamped oscillation the acceleration is proportional to
the movement, but their directions are opposite. Determine the
movement if the velocity is v0 = c2ω and the movement is 0 at
t = 0.
The equation of undamped oscillation:

ÿ = ω2y ,

where ω is the angular velocity.

Solve the equation of damped oscillation using the previous initial
data

mÿ = −ω2my − 2sẏ ,

where m is the mass, and s is the damping factor.
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Existence and uniqueness theorems

Theorem (Picard-Lindelöf existence an uniqueness theorem)

Assume that there is a constant L > 0, such that

|f (t, x)− f (t, x̄)| ≤ L|x − x̄ |, (Lipschitz condition)

for all fixed t ∈ [ξ, ξ + a]. f is continuous on [ξ, ξ + a]× R. Then the
initial value problem (??)-(??) has a unique solution

x : [ξ, ξ + a]→ R

on the interval [ξ, ξ + a].

Theorem (Peano existence theorem)

If f is continuous on an open set of the plane which contains the point
(ξ, η), then the initial value problem (??)-(??) has at least one solution
goes through (ξ, η) which is extendible to the boundary of the set.
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Existence and uniqueness theorems

Exercises
Can be applied or not the previous theorems for the following
problems?

x ′ =
√
|x |, x(0) = 0,

y ′ = y log(y), y(1) = 1.

Rephrase the following initial value problems as integral equations!

x ′ = t − x2, x(0) = 0,
y ′ = y 2 − 3x2 − 1, y(0) = 1,
y ′ = y + ey , y(0) = 1.
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